References

Albrecht, J., & Shanahan, D. (2013). The use of large corpora to train a new type of key-finding algorithm. Music Perception, 31(1), 59–67. https://doi.org/10.1525/mp.2013.31.1.59

Ammirante, P., & Russo, F. A. (2015). Low-skip bias: The distribution of skips across the pitch ranges of vocal and instrumental melodies is vocally constrained. Music Perception: An Interdisciplinary Journal, 32(4), 355–363.

Babbs, C. F. (2011). Quantitative reappraisal of the helmholtz-guyton resonance theory of frequency tuning in the cochlea. Journal of Biophysics, 2011, 435135. https://doi.org/10.1155/2011/435135

Bachem, A. (1950). Tone height and tone chroma as two different pitch qualities. Acta Psychologica, 7, 80–88. https://doi.org/10.1016/0001-6918(50)90004-7

Balzano, G. J. (1982). The pitch set as a level of description for studying musical pitch perception. In M. Clynes (Ed.), Music, mind, and brain: The neuropsychology of music (pp. 321–351). Springer US. https://doi.org/10.1007/978-1-4684-8917-0\_17

Bell, A. (2004). Hearing: Travelling wave or resonance? PLoS Biology, 2(10), e337. https://doi.org/10.1371/journal.pbio.0020337

Bellmann, H. (2005). About the determination of key of a musical excerpt. In R. Kronland-Martinet, T. Voinier, & S. Ystad (Eds.), Proceedings of the Third International Symposium of Computer Music Modeling and Retrieval (pp. 76–91). Springer.

Békésy, G. von. (1960). Experiments in hearing. McGraw-Hill.

Bigand, E., Parncutt, R., & Lerdahl, F. (1996). Perception of musical tension in short chord sequences: The influence of harmonic function, sensory dissonance, horizontal motion, and musical training. Perception & Psychophysics, 58(1), 124–141. https://doi.org/10.3758/BF03205482

Bigand, E., & Poulin-Charronnat, B. (2006). Are we “experienced listeners”? A review of the musical capacities that do not depend on formal musical training. Cognition, 100(1), 100–130. https://doi.org/10.1016/j.cognition.2005.11.007

Brown, H. (1988). The interplay of set content and temporal context in a functional theory of tonality perception. Music Perception, 5(3), 219–249. https://doi.org/10.2307/40285398

Brown, S., & Jordania, J. (2013). Universals in the world’s musics. Psychology of Music, 41(2), 229–248. https://doi.org/10.1177/0305735611425896

Broze, Y., & Shanahan, D. (2013). Diachronic changes in jazz harmony: A cognitive perspective. Music Perception, 31(1), 32–45. https://doi.org/10.1525/rep.2008.104.1.92

Chomsky, N. (1957). Syntactic structures. Mouton Publishers.

Coutinho, E., & Scherer, K. R. (2017). Introducing the GEneva music-induced affect checklist (GEMIAC) a brief instrument for the rapid assessment of musically induced emotions. Music Perception: An Interdisciplinary.

Cowen, A. S., Fang, X., Sauter, D., & Keltner, D. (2020). What music makes us feel: At least 13 dimensions organize subjective experiences associated with music across different cultures. Proceedings of the National Academy of Sciences of the United States of America, 117(4), 1924–1934. https://doi.org/10.1073/pnas.1910704117

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychol. Bull., 52(4), 281–302.

Cross, I. (1995). Review of “the analysis and cognition of melodic complexity: The implication-realization model”. Narmour, 12(4), 486–509.

Cross, I. (2001). Music, cognition, culture, and evolution. Annals of the New York Academy of Sciences, 930, 28–42. https://doi.org/10.1111/j.1749-6632.2001.tb05723.x

Dallos, P. (2008). Cochlear amplification, outer hair cells and prestin. Current Opinion in Neurobiology, 18(4), 370–376. https://doi.org/10.1016/j.conb.2008.08.016

Daniel, P., & Weber, R. (1997). Psychoacoustical roughness: Implementation of an optimized model. Acta Acustica United with Acustica, 83(1), 113–123.

Darwin, C. (1871). The descent of man and selection in relation to sex. John Murray.

Deutsch, D. (2013). Psychology of music. Elsevier.

Dowling, W. J. (1978a). Scale and contour: Two components of a theory of memory for melodies. Psychological Review, 85(4), 341–354. https://doi.org/10.1037/0033-295x.85.4.341

Dowling, W. J. (1978b). Scale and contour: Two components of a theory of memory for melodies. Psychological Review, 85(4), 341–354.

Drake, J. E., & Winner, E. (2012). Confronting sadness through art-making: Distraction is more beneficial than venting. Psychology of Aesthetics, Creativity, and the Arts, 6(3), 255–261. https://doi.org/10.1037/a0026909

Eerola, T., Louhivuori, J., & Lebaka, E. (2009). Expectancy in sami yoiks revisited: The role of data-driven and schema-driven knowledge in the formation of melodic expectations. Musicae Scientiae: The Journal of the European Society for the Cognitive Sciences of Music, 13(2), 231–272.

Eerola, T., Vuoskoski, J. K., Peltola, H.-R., Putkinen, V., & Schäfer, K. (2018). An integrative review of the enjoyment of sadness associated with music. Physics of Life Reviews, 25, 100–121. https://doi.org/10.1016/j.plrev.2017.11.016

Einstein, A. (1918). Über gravitationswellen. Sitzungsberichte Der Königlich Preußischen Akademie Der Wissenschaften, 154–167.

Ekman, P. (1999). Basic emotions. In T. Dalgleish & T. Power (Eds.), The handbook of cognition and emotion (pp. 45–60). John Wiley & Sons, Ltd.

Fogel, A. R., Rosenberg, J. C., Lehman, F. M., Kuperberg, G. R., & Patel, A. D. (2015). Studying musical and linguistic prediction in comparable ways: The melodic cloze probability method. Frontiers in Psychology, 6, 1718. https://doi.org/10.3389/fpsyg.2015.01718

Gardiner, M. F., Fox, A., Knowles, F., & Jeffrey, D. (1996). Learning improved by arts training. Nature, 381(6580), 284. https://doi.org/10.1038/381284a0

Gosling, S. D., Rentfrow, P. J., & Swann, W. B. (2003). A very brief measure of the Big-Five personality domains. J. Res. Pers., 37(6), 504–528.

Hakizimana, P., & Fridberger, A. (2021). Inner hair cell stereocilia are embedded in the tectorial membrane. Nature Communications, 12(1), 2604. https://doi.org/10.1038/s41467-021-22870-1

Hallam, S., Cross, I., & Thaut, M. (2017). The oxford handbook of music psychology. Oxford University Press.

Harrison, P. M. C. (2020). Modelling the perception and composition of western musical harmony [PhD thesis]. Queen Mary University of London.

Harrison, P. M. C., & Pearce, M. T. (2020). Simultaneous consonance in music perception and composition. Psychological Review, 127(2), 216–244. https://doi.org/10.1037/rev0000169

Harrison, P., & Pearce, M. (2020). A computational cognitive model for the analysis and generation of voice leadings. Music Perception: An Interdisciplinary Journal, 37(3), 208–224. https://doi.org/10.1525/mp.2020.37.3.208

Hart, J., & Cohen, A. (1973). Intonation by rule: A perceptual quest. Journal of Phonetics, 1(4), 309–327.

Hearne, L. M. (2020). The cognition of harmonic tonality in microtonal scales [PhD thesis]. Western Sydney University.

Helmholtz, H. L. F. (1875). On the sensations of tone as a physiological basis for the theory of music. Longmans, Green; Co.

Henrich, J., Heine, S. J., & Norenzayan, A. (2010). Most people are not WEIRD. Nature, 466(7302), 29–29. https://doi.org/10.1038/466029a

Hetland, L. (2000). Learning to make music enhances spatial reasoning. Journal of Aesthetic Education, 34(3/4), 179–238. https://doi.org/10.2307/3333643

Hippel, P. von. (2002, May). Melodic-expectation rules as learned heuristics. Proceedings of the 7th International Conference on Music Perception and Cognition.

Hu, D. J., & Saul, L. K. (2009). A probabilistic topic model for unsupervised learning of musical key-profiles. In K. Hirata, G. Tzanetakis, & K. Yoshii (Eds.), Proceedings of the 10th International Society for Music Information Retrieval Conference.

Huron, D. (1996). The melodic arch in western folksongs. Computing in Musicology, 10, 3–23.

Huron, D. (2001). Tone and voice: A derivation of the rules of voice-leading from perceptual principles. Music Perception, 19(1), 1–64. https://doi.org/10.1525/mp.2001.19.1.1

Huron, D., & Sellmer, P. (1992). Critical bands and the spelling of vertical sonorities. Music Perception, 10(2), 129–149. https://doi.org/10.2307/40285604

Huron, D., & Vuoskoski, J. K. (2020). On the enjoyment of sad music: Pleasurable compassion theory and the role of trait empathy. Frontiers in Psychology, 11, 1060. https://doi.org/10.3389/fpsyg.2020.01060

Hutchinson, W., & Knopoff, L. (1978). The acoustic component of western consonance. Interface, 7(1), 1–29. https://doi.org/10.1080/09298217808570246

Jacoby, N., Polak, R., Grahn, J., Cameron, D. J., Lee, K. M., Godoy, R., Undurraga, E. A., Huanca, T., Thalwitzer, T., Doumbia, N., & al., E. (2021). Universality and cross-cultural variation in mental representations of music revealed by global comparison of rhythm priors. https://doi.org/10.31234/osf.io/b879v

Jacoby, N., Undurraga, E. A., McPherson, M. J., Valdés, J., Ossandón, T., & McDermott, J. H. (2019). Universal and non-universal features of musical pitch perception revealed by singing. Current Biology: CB, 29(19), 3229–3243.e12. https://doi.org/10.1016/j.cub.2019.08.020

Juslin, P. N. (2013). From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions. Physics of Life Reviews, 10(3), 235–266. https://doi.org/10.1016/j.plrev.2013.05.008

Juslin, P. N., Juslin, P. N., & Sloboda, J. A. (2001). Communicating emotion in music performance: A review and a theoretical framework. Music and Emotion: Theory and Research, 309–337.

Juslin, P. N., & Laukka, P. (2003). Communication of emotions in vocal expression and music performance: Different channels, same code? Psychological Bulletin, 129(5), 770–814.

Juslin, P. N., & Västfjäll, D. (2008). Emotional responses to music: The need to consider underlying mechanisms. Behavioral and Brain Sciences, 31(6), 751–751. https://doi.org/10.1017/s0140525x08006079

Kidd, D. C., & Castano, E. (2013). Reading literary fiction improves theory of mind. Science, 342(6156), 377–380. https://doi.org/10.1126/science.1239918

Koelsch, S. (2009). Neural substrates of processing syntax and semantics in music. In Music that works (pp. 143–153). Springer-Verlag.

Koelsch, S., Gunter, T., Friederici, A. D., & Schröger, E. (2000). Brain indices of music processing: “Nonmusicians” are musical. Journal of Cognitive Neuroscience, 12(3), 520–541.

Krumhansl, C., & Kessler, E. (1982). Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychological Review, 89(4), 334–368. https://doi.org/10.1037/0033-295x.89.4.334

Krumhansl, C. L. (1990). Cognitive foundations of musical pitch. Oxford Psychology Series.

Krumhansl, C. L. (1995). Music psychology and music theory: Problems and prospects. Music Theory Spectrum, 17(1), 53–80.

Krumhansl, C. L., Toivanen, P., Eerola, T., Toiviainen, P., Järvinen, T., & Louhivuori, J. (2000). Cross-cultural music cognition: Cognitive methodology applied to north sami yoiks. Cognition, 76(1), 13–58. https://doi.org/10.1016/s0010-0277(00)00068-8

Ladd, D. R. (2008). Intonational phonology (2nd ed.). Cambridge University Press.

Lee, C. J., Andrade, E. B., & Palmer, S. E. (2013). Interpersonal relationships and preferences for mood-congruency in aesthetic experiences. The Journal of Consumer Research, 40(2), 382–391. https://doi.org/10.1086/670609

Leman, M. (2000). An auditory model of the role of short-term memory in probe-tone ratings. Music Perception, 17(4), 481–509.

Lerdahl, F. (1988). Tonal pitch space. Music Perception, 5(3), 315–349. https://doi.org/10.2307/40285402

London, J. (2013). Building a representative corpus of classical music. Music Perception, 31(1), 68–90.

MacKay, D. J. C. (2003). Information theory, inference and learning algorithms. Cambridge University Press.

Madsen, S. T., & Widmer, G. (2007). Key-finding with interval profiles. Proceedings of the International Computer Music Conference (ICMC).

Mar, R. A., & Oatley, K. (2008). The function of fiction is the abstraction and simulation of social experience. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 3(3), 173–192. https://doi.org/10.1111/j.1745-6924.2008.00073.x

Margulis, E. H. (2005). A model of melodic expectation. Music Perception, 22(4), 663–714.

Mathes, R. C., & Miller, R. L. (1947). Phase effects in monaural perception. The Journal of the Acoustical Society of America, 19(5), 780–797. https://doi.org/10.1121/1.1916623

Matsunaga, R., & Abe, J. (2005). Cues for key perception of a melody. Music Perception, 23(2), 153–164. https://doi.org/10.1525/mp.2005.23.2.153

McAdams, S., & Giordano, B. L. (2009). The perception of musical timbre. In S. Hallam, I. Cross, & M. Thaut (Eds.), The Oxford handbook of music psychology (pp. 72–80). Oxford University Press.

McDermott, J. H., Lehr, A. J., & Oxenham, A. J. (2010). Individual differences reveal the basis of consonance. Current Biology, 20(11), 1035–1041. https://doi.org/10.1016/j.cub.2010.04.019

McDermott, J. H., Schultz, A. F., Undurraga, E. A., & Godoy, R. A. (2016). Indifference to dissonance in native amazonians reveals cultural variation in music perception. Nature, 535(7613), 547–550. https://doi.org/10.1038/nature18635

McDermott, J. H., Schultz, A. F., Undurraga, E. A., & Godoy, R. A. (2016). Indifference to dissonance in native amazonians reveals cultural variation in music perception. Nature, 535(7613), 547–550. https://doi.org/10.1038/nature18635

McGowan, R. W., & Levitt, A. G. (2011). A comparison of rhythm in english dialects and music. Music Perception, 28(3), 307–314.

Mehr, S. A., Krasnow, M. M., Bryant, G. A., & Hagen, E. H. (2020). Origins of music in credible signaling. Behavioral and Brain Sciences, 44, e60. https://doi.org/10.1017/S0140525X20000345

Mehr, S. A., Singh, M., Knox, D., Ketter, D. M., Pickens-Jones, D., Atwood, S., Lucas, C., Jacoby, N., Egner, A. A., Hopkins, E. J., Howard, R. M., Hartshorne, J. K., Jennings, M. V., Simson, J., Bainbridge, C. M., Pinker, S., O’Donnell, T. J., Krasnow, M. M., & Glowacki, L. (2019). Universality and diversity in human song. Science, 366(6468). https://doi.org/10.1126/science.aax0868

Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. MIT Press.

Menninghaus, W., Wagner, V., Wassiliwizky, E., Schindler, I., Hanich, J., Jacobsen, T., & Koelsch, S. (2019). What are aesthetic emotions? Psychological Review, 126(2), 171–195. https://doi.org/10.1037/rev0000135

Meyer, L. (1956). Emotion and meaning in music. University of Chicago Press.

Milne, A. J., Laney, R., & Sharp, D. (2015). A spectral pitch class model of the probe tone data and scalic tonality. Music Perception, 32(4), 364–393. https://doi.org/10.1525/MP.2015.32.4.364

Milne, A. J., Sethares, W. A., Laney, R., & Sharp, D. B. (2011). Modelling the similarity of pitch collections with expectation tensors. Journal of Mathematics & Music. Mathematical and Computational Approaches to Music Theory, Analysis, Composition and Performance, 5(1), 1–20. https://doi.org/10.1080/17459737.2011.573678

Moreno, S., & Bidelman, G. M. (2014). Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hearing Research, 308, 84–97. https://doi.org/10.1016/j.heares.2013.09.012

Morgan, E., Fogel, A., Nair, A., & Patel, A. D. (2019). Statistical learning and gestalt-like principles predict melodic expectations. Cognition, 189, 23–34. https://doi.org/10.1016/j.cognition.2018.12.015

Moss, F., & Rohrmeier, M. (2021). Discovering tonal profiles with latent dirichlet allocation. Music & Science, 4, 205920432110488. https://doi.org/10.1177/20592043211048827

Narmour, E. (1990). The analysis and cognition of basic melodic structures: The implication-realization model. University of Chicago Press.

Narmour, E. (1992). The analysis and cognition of melodic complexity: The implication-realization model. University of Chicago Press.

Palmer, A. R., & Russell, I. J. (1986). Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hearing Research, 24(1), 1–15. https://doi.org/10.1016/0378-5955(86)90002-x

Park, M., Thom, J., Mennicken, S., Cramer, H., & Macy, M. (2019). Global music streaming data reveal diurnal and seasonal patterns of affective preference. Nat Hum Behav, 3(3), 230–236.

Parncutt, R. (1989). Harmony: A psychoacoustical approach. Springer-Verlag.

Patel, A. D. (2021). Vocal learning as a preadaptation for the evolution of human beat perception and synchronization. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 376(1835), 20200326. https://doi.org/10.1098/rstb.2020.0326

Patel, A. D., & Daniele, J. R. (2003). An empirical comparison of rhythm in language and music. Cognition, 87(1), 35–45.

Patel, A. D., & Iversen, J. R. (2014). The evolutionary neuroscience of musical beat perception: The action simulation for auditory prediction (asap) hypothesis. Frontiers in Systems Neuroscience, 8. https://doi.org/10.3389/fnsys.2014.00057

Patel, A. D., Iversen, J. R., Bregman, M. R., & Schulz, I. (2009). Experimental evidence for synchronization to a musical beat in a nonhuman animal. Current Biology, 19(10), 880. https://doi.org/10.1016/j.cub.2009.05.023

Pearce, M. T. (2005). The construction and evaluation of statistical models of melodic structure in music perception and composition [PhD thesis]. City University, London.

Pearce, M. T. (2018). Statistical learning and probabilistic prediction in music cognition: Mechanisms of stylistic enculturation. Annals of the New York Academy of Sciences, 1423(1), 378–395.

Pearce, M. T., & Wiggins, G. A. (2006). Expectation in melody: The influence of context and learning. Music Perception, 23(5), 377–405. https://doi.org/10.1525/mp.2006.23.5.377

Pelofi, C., & Farbood, M. M. (2021). Asymmetry in scales enhances learning of new musical structures. Proceedings of the National Academy of Sciences of the United States of America, 118(31). https://doi.org/10.1073/pnas.2014725118

Pinker, S. (1997). How the mind works. W. W. Norton.

Rad, M. S., Martingano, A. J., & Ginges, J. (2018). Toward a psychology of homo sapiens: Making psychological science more representative of the human population. Proceedings of the National Academy of Sciences of the United States of America, 115(45), 11401–11405. https://doi.org/10.1073/pnas.1721165115

Rauscher, F. H. (2002). Mozart and the mind: Factual and fictional effects of musical enrichment. In J. Aronson (Ed.), Improving academic achievement (pp. 267–278). Academic Press. https://doi.org/10.1016/B978-012064455-1/50016-6

Ravignani, A., & Delgado, T. (2016). Musical evolution in the lab exhibits rhythmic universals. Nature Publishing Group, 1(december), 1–7. https://doi.org/10.1038/s41562-016-0007

Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of Mathematics & Music. Mathematical and Computational Approaches to Music Theory, Analysis, Composition and Performance, 5(1), 35–53.

Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161–1178. https://doi.org/10.1037/h0077714

Sachs, C. (1962). The wellsprings of music. Martinus Nijhoff.

Sala, G., & Gobet, F. (2020). Cognitive and academic benefits of music training with children: A multilevel meta-analysis. Memory & Cognition, 48(8), 1429–1441. https://doi.org/10.3758/s13421-020-01060-2

Santos-Luiz, C. dos, Mónico, L. S. M., Almeida, L. S., & Coimbra, D. (2016). Exploring the long-term associations between adolescents’ music training and academic achievement. Music Scientiae, 20(4), 512–527.

Sapp, C. S. (2011). Computational methods for the analysis of musical structure [PhD thesis]. Stanford University.

Savage, P. E., Brown, S., Sakai, E., & Currie, T. E. (2015). Statistical universals reveal the structures and functions of human music. Proceedings of the National Academy of Sciences, 112(29), 8987–8992. https://doi.org/10.1073/pnas.1414495112

Savage, P. E., Loui, P., Tarr, B., Schachner, A., Glowacki, L., Mithen, S., & Fitch, W. T. (2020). Music as a coevolved system for social bonding. Behavioral and Brain Sciences, 44, e59. https://doi.org/10.1017/S0140525X20000333

Schellenberg, E. G. (2004). Music lessons enhance IQ. Psychological Science, 15(8), 511–514. https://doi.org/10.1111/j.0956-7976.2004.00711.x

Schellenberg, E. G. (2011a). Examining the association between music lessons and intelligence. British Journal of Psychology, 102(3), 283–302. https://doi.org/10.1111/j.2044-8295.2010.02000.x

Schellenberg, E. G. (1996). Expectancy in melody: Tests of the implication-realization model. Cognition, 58(1), 75–125. https://doi.org/10.1016/0010-0277(95)00665-6

Schellenberg, E. G. (2011b). Music lessons, emotional intelligence, and IQ. Music Perception, 29(2), 185–194. https://doi.org/10.1525/mp.2011.29.2.185

Sethares, W. A. (2005). Tuning, timbre, spectrum, scale. Springer.

Shanahan, D., & Albrecht, J. (2019). Examining the effect of oral transmission on folksongs. Music Perception, 36(3), 273–288. https://doi.org/10.1525/mp.2019.36.3.273

Shanahan, D., & Huron, D. (2011). Interval size and phrase position: A comparison between german and chinese folksongs. Empirical Musicology Review: EMR, 6(4), 187–197.

Skov, M., & Nadal, M. (2020). There are no aesthetic emotions: Comment on menninghaus et al. (2019). Psychological Review, 127(4), 640–649. https://doi.org/10.1037/rev0000187

Temperley, D. (1999). What’s key for key? The Krumhansl-Schmuckler key-finding algorithm reconsidered. Music Perception, 17, 65–100.

Temperley, D. (2008). A probabilistic model of melody perception. Cogn. Sci., 32(2), 418–444.

Temperley, D. (2013). Computational models of music cognition. In D. Deutsch (Ed.), The psychology of music (pp. 327–368). Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-381460-9.00008-0

Thompson, W. F. (1996). Eugene narmour: The analysis and cognition of basic musical structures (1990) and the analysis and cognition of melodic complexity (1992): A review and empirical assessment. Journal of the American Musicological Society, 49(1), 127–145.

Thompson, W. F., & Olsen, K. N. (2021). The science and psychology of music: From beethoven at the office to beyoncé at the gym. Greenwood Publishing Group Inc.

Tillmann, B., Koelsch, S., Escoffier, N., Bigand, E., Lalitte, P., Friederici, A. D., & Cramon, D. Y. von. (2006). Cognitive priming in sung and instrumental music: Activation of inferior frontal cortex. Neuroimage, 31(4), 1771–1782. https://doi.org/10.1016/j.neuroimage.2006.02.028

Toiviainen, P., & Krumhansl, C. L. (2003). Measuring and modeling real-time responses to music: The dynamics of tonality induction. Perception, 32, 741–766. https://doi.org/10.1068/p3312

Vaissière, J. (1983). Language-independent prosodic features. In Springer series in language and communication (pp. 53–66). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-69103-4\_5

Vassilakis, P. N. (2001). Perceptual and physical properties of amplitude fluctuation and their musical significance [PhD thesis]. UCLA.

Von Hippel, P., & Huron, D. (2000). Why do skips precede reversals? The effect of tessitura on melodic structure. Music Perception, 18(1), 59–85. https://doi.org/10.2307/40285901

Wang, Y. S., Shen, G. Q., Guo, H., Tang, X. L., & Hamade, T. (2013). Roughness modelling based on human auditory perception for sound quality evaluation of vehicle interior noise. Journal of Sound and Vibration, 332(16), 3893–3904. https://doi.org/10.1016/j.jsv.2013.02.030

Watt, H. J. (1924). Functions of the size of interval in the songs of schubert and of the chippewa and teton sioux indians. British Journal of Psychology, 14(4), 370–421.

Weij, B. van der, Pearce, M. T., & Honing, H. (2017). A probabilistic model of meter perception: Simulating enculturation. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.00824

Williamon, A., Ginsborg, J., Perkins, R., & Waddell, G. (2021). Performing music research: Methods in music education, psychology, and performance science. Oxford University Press.

Wysocki, A. C., Lawson, K. M., & Rhemtulla, M. (2022). Statistical control requires causal justification. Advances in Methods and Practices in Psychological Science, 5(2), 25152459221095823. https://doi.org/10.1177/25152459221095823

Zentner, M., Grandjean, D., & Scherer, K. R. (2008). Emotions evoked by the sound of music: Characterization, classification, and measurement. Emotion, 8(4), 494–521. https://doi.org/10.1037/1528-3542.8.4.494